Développement : Décomposition polaire

Algèbre & Géométrie Analyse & Probabilités

Références: [CAL] CALDERO P., GERMONI J., Histoires hédonistes de groupes et de géométries - Tome premier, Calvage et Mounet, 2013, p202.

Pour les leçons :

- $\overline{}$ 106 : Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de $\mathrm{GL}(E)$. Applications.
- 152 : Endomorphismes diagonalisables en dimension finie.
- 154 : Exemples de décompositions de matrices. Applications.
- 157 : Matrices symétriques réelles, matrices hermitiennes.
- 158: Endomorphismes remarquables d'un espace vectoriel euclidien (de dimension finie).
- 170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité. Applications.
- 203 : Utilisation de la notion de compacité.

Le but de ce développement est de prouver un théorème de décomposition polaire, énoncé plus bas.

Lemme 1.

Soient $A, B \in \mathcal{M}_n(\mathbb{C})^2$. Si $A^2 = B^2$, alors les valeurs propres de A et de B sont les mêmes au signe près.

<u>Preuve</u>: Supposons que $A^2 = B^2$. Notons $Sp(A) = \{\lambda_1, \dots, \lambda_s\}$.

En trigonalisant A et en passant au carré, on voit que $\operatorname{Sp}(A^2) = \{\lambda_1^2, \dots, \lambda_s^2\}$ (avec éventuelles répétitions). Soit $\mu \in \operatorname{Sp}(B)$. Alors, de même, μ^2 est une valeur propre de $B^2 = A^2$. Il existe ainsi $i \in [1; n]$ tel que $\mu^2 = \lambda_i^2$, et donc $\mu = \pm \lambda_i$. Donc $\mu \in \operatorname{Sp}(A)$ ou $-\mu \in \operatorname{Sp}(A)$.

De même, si $\lambda \in \operatorname{Sp}(A)$, $\lambda \in \operatorname{Sp}(B)$ ou $-\lambda \in \operatorname{Sp}(B)$.

Cela prouve que A et B ont les mêmes valeurs propres au signe près.

Théorème 2. Décomposition polaire.

La multiplication matricielle induit un homéomorphisme $\varphi: O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) \to \mathrm{GL}_n(\mathbb{R})$ défini par :

$$\forall (O, S) \in O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) \quad \varphi(O, S) = OS.$$

PREUVE : Soit φ l'application définie dans l'énoncé du théorème. Soit $(O, S) \in O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R})$.

 \star ÉTAPE 1 : Montrons que φ est bien définie et continue.

On a $\det(\varphi(O,S)) = \det(O)\det(S) \neq 0$, donc φ est bien définie.

En outre, φ est continue en tant que fonction polynomiale en les coefficients de O et de S.

 \star ÉTAPE 2 : Montrons que φ est surjective.

Soit $M \in GL_n(\mathbb{R})$. Pour tout $X \in \mathbb{R}^n$, on a :

$$^{t}X^{t}MMX = \|MX\|_{2}^{2} \geqslant 0.$$

Si $X \neq 0_{\mathbb{R}^n}$, l'inégalité est stricte, car dans le cas contraire, M aurait 0 comme valeur propre, et donc $M \notin \mathrm{GL}_n(\mathbb{R})$. Par conséquent, ${}^tMM \in \mathcal{S}_n^{++}(\mathbb{R})$. D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ avec les $\lambda_i > 0$ tels que :

$$^{t}MM = PD^{t}P.$$

Posons $S = P \operatorname{diag} \left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n} \right)^{-t} P \in \mathcal{S}_n^{++}(\mathbb{R})$, de sorte que $S^2 = {}^t MM$.

On pose également $O = MS^{-1}$, de sorte que :

$${}^{t}OO = S^{-1} {}^{t}MMS^{-1}$$

= $S^{-1}S^{2}S^{-1}$
= I_{n} .

Alors, $O \in O_n(\mathbb{R})$, et on a :

$$\varphi(O,S) = OS \\
= M,$$

ce qui prouve que φ est surjective.

 \star ÉTAPE 3 : Montrons que φ est injective.

Soient $(O, S), (O', S') \in O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R})$ tel que :

$$M := \varphi(O, S) = OS = O'S' = \varphi(O', S').$$

Alors,

$$^{t}MM = ^{t} S^{t}OOS = S^{2} = S'^{2}.$$

Donc $S^2 = {S'}^2$. Soit Q un polynôme interpolateur de LAGRANGE (de degré minimal, par exemple) défini par :

$$\forall i \in [1; n] \quad Q(\lambda_i) = \sqrt{\lambda_i},$$

où les λ_i sont les valeurs propres de S^2 $\Big(=S'^2\Big)$. Alors, en notant $P\in O_n(\mathbb{R})$ donné par le théorème spectral appliqué à S:

$$S = P \operatorname{diag} \left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n} \right)^t P$$
$$= PQ(\operatorname{diag}(\lambda_1, \dots, \lambda_n))^t P$$
$$= Q(P \operatorname{diag}(\lambda_1, \dots, \lambda_n)^t P)$$
$$= Q(S^2).$$

Le lemme 2 montre que S et S' ont les mêmes valeurs propres au signe près. Comme elles sont dans $\mathcal{S}_n^{++}(\mathbb{R})$, ces valeurs propres sont positives, donc $\operatorname{Sp}(S) = \operatorname{Sp}(S')$. On peut donc appliquer le même raisonnement pour avoir $S' = Q\left(S'^2\right)$. Comme $S^2 = {S'}^2$, on a ainsi :

$$S = Q(S^2) = Q(S'^2) = S',$$

et donc S = S'. Par suite, O = O'.

Remarque 3.

Le livre fait une autre preuve de S=S' (en passant par une diagonalisation simultanée) mais cet argument me paraît plus simple.

D'où l'injectivité.

Ainsi, φ est bijective.

 \star ÉTAPE 4 : Montrons que φ^{-1} est continue.

Soit $M \in \operatorname{GL}_n(\mathbb{R})$, et soit $(M_k)_{k \in \mathbb{N}} \in \operatorname{GL}_n(\mathbb{R})^{\mathbb{N}}$ convergente vers M. On écrit M = OS, où $(O, S) = \varphi^{-1}(M)$.

Pour $k \in \mathbb{N}$, on note:

$$(O_k, S_k) = \varphi^{-1}(M_k) \in O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}).$$

Montrons que $(O_k)_{k\in\mathbb{N}}$ et $(S_k)_{k\in\mathbb{N}}$ converge respectivement vers O et S.

Comme $O_n(\mathbb{R})$ est compact, $(O_k)_{k\in\mathbb{N}}$ a une valeur d'adhérence \bar{O} . Il existe donc une extractrice $\psi:\mathbb{N}\to\mathbb{N}$ telle que :

$$\lim_{k \to +\infty} O_{\psi(k)} = \bar{O}.$$

Alors, pour $k \in \mathbb{N}$:

$$S_{\psi(k)} = (O_{\psi(k)})^{-1} M_{\psi(k)} \xrightarrow[k \to +\infty]{} \bar{O}^{-1} M =: \bar{S},$$

par continuité de la fonction $A \longmapsto A^{-1}$ (ou, au choix, de la transposée, puisque les $O_{\psi(k)} \in O_n(\mathbb{R})$). Maintenant:

$$\bar{S} = \bar{O}^{-1}M \\
\in \operatorname{GL}_n(\mathbb{R}) \cap \overline{S_n^{++}(\mathbb{R})} \\
\in \operatorname{GL}_n(\mathbb{R}) \cap S_n^{+}(\mathbb{R}) \\
\in S_n^{++}(\mathbb{R}).$$

Donc $M=\varphi(O,S)=\varphi(\bar{O},\bar{S}).$ Comme φ est bijective, $O=\bar{O}$ et $S=\bar{S}.$

On a montré que toute valeur d'adhérence de la suite $(O_k)_{k\in\mathbb{N}}$ est égale à O, et c'est une suite d'un espace compact. Donc $(O_k)_{k\in\mathbb{N}}$ converge et $\lim_{k\to+\infty}O_k=O$, et comme $\lim_{k\to+\infty}M_k=M$, on a que $(S_k)_{k\in\mathbb{N}}$ est convergente et $\lim_{k\to+\infty}S_k=S$.

En conclusion, pour toute $M \in GL_n(\mathbb{R})$ et $(M_k)_{k \in \mathbb{N}} \in GL_n(\mathbb{R})^{\mathbb{N}}$, $\varphi^{-1}(M_k) \xrightarrow[k \to +\infty]{} \varphi^{-1}(M)$.

Donc φ^{-1} est continue, ce qui achève la preuve.

Remarque 4. Polynôme interpolateur de LAGRANGE.

Soient $a_1, \ldots, a_r \in \mathbb{C}$ deux à deux distincts, et $b_1, \ldots, b_r \in \mathbb{C}$ (pas forcément deux à deux distincts). Le polynôme interpolateur de LAGRANGE associé à ces nombres est l'unique polynôme Q de degré < r défini par :

$$Q(X) = \sum_{i=1}^{r} b_i \prod_{\substack{1 \leqslant j \leqslant r \\ j \neq i}} \frac{X - a_j}{a_i - a_j}.$$